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Abstract

In this work we address the problem of how
to use time series data to choose from a finite
set of candidate discrete state spaces, where
these spaces are constructed by a domain ex-
pert. We formalize the notion of model selec-
tion consistency in the proposed setup. We
then discuss the difference between our pro-
posed framework and the classical Maximum
Likelihood (ML) framework, and give an ex-
ample where ML fails. Afterwards, we sug-
gest alternative selection criteria and show
them to be weakly consistent. Finally, we
test the performance of the suggested crite-
ria on both simulated and real world data.

1. Introduction

Markov decision processes (MDPs) can describe dy-
namical problems found in artificial intelligence, con-
trol, operations research and many other fields. Algo-
rithms that use MDPs for optimizing and evaluating
policies in different decision problems typically start
with the assumption that the state space is known. In
practice, this is generally not the case. In many situ-
ations the practitioner must choose from a candidate
set of state spaces, usually constructed by a domain
expert, before applying an optimization algorithm.

Our work is motivated by the following scenario: a
stream of data describing some goal oriented dynamics
is given and a domain expert analyzes the observations
and suggests different models that might generate the
suggested data. We focus on selecting the most suit-
able model among these suggested. Our findings offer
conceptual and practical contributions. The concep-
tual contribution include a new framework for model
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selection of stochastic processes, which deviates from
the classical maximum likelihood (ML) framework.

We present alternative criteria for model selection in
MDPs. Our methods are then tested on a real world
marketing problem where each client is modeled us-
ing a Markov chain and the goal is to optimize the
company’s mail requests to maximize future utility.

2. Setup

The setup is defined in the Markov decision process
framework (Puterman, 1994); We begin with a formal
definition:

Definition 2.1 An observable Markov Decision Pro-
cess (MDP) is a tuple (S,U , P,R,O), where S is the
state space set, U is the actions space, P : S×S×U 7→
[0, 1] is the transition probability function, the reward
R ∈ R is a random variable dependant on the state and
the action, and the observation O ∈ O, where O is the
observation space, is a random variable dependant on
the state.

The system dynamics are the following: in each time
step t = 0, 1, ..., the system is at some state st ∈ S.
An observation ot is generated according to the cur-
rent state and viewed as an output to the user. The
user then chooses an action ut ∈ U . A reward rt is
generated according to the last state and action, and
the state in the succeeding time step t + 1 is chosen
according to the transition matrix, st and ut such that
st+1 ∼ P (·|st, ut). The time t is incremented by 1 and
the process repeats itself.

Throughout this work, we assume some regularity con-
ditions regarding the MDP since other cases are of less
interest in our context. These conditions are summa-
rized in the following assumptions.

Assumption 2.2 For increasingly more data samples
from the MDP, each state-action pair appears infinitely
often.
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Assumption 2.3 The data were generated by apply-
ing a constant policy.

Assumption 2.4 For every s ∈ S, o ∈ O, if P (o|s) >
0 then ∀s′ ∈ S \ {s} : P (o|s′) = 0, i.e., for each ob-
servation o ∈ O there is a unique possible state s ∈ S
that it could have originated from, denoted by s(o).

Assumption 2.2 guarantees estimates of the MDP’s pa-
rameters P,E[R] based on increasingly more samples
will converge to their correct values. Assumption 2.3
guarantees estimates of the incorrect MDP’s parame-
ters will converge to some policy dependent value as
well. Thus, these are crucial to the notion of weak
consistency which will be presented later. Assumption
2.4 may seem too harsh and it is in fact used to sim-
plify some technicalities. Moreover, in the framework
we have in mind the observations hold excessive infor-
mation on the state, which means Assumption 2.4 will
hold at least with high probability on such cases.

Our basic setup is known as the offline batch setup:
We observe a sequence of T observations, actions and
rewards that occur in some space O × U × R. The
observation space O is possibly high dimensional, con-
tinuous, or processed in an unknown way that does not
allow us to compute its probability density function.
Denote the trajectory by

DT = (o1, u1, r1, o2, u2, r2, . . . , oT , uT , rT ). (1)

These observations and rewards come from an under-
lying finite state MDP, denoted by M∗.

Definition 2.5 A candidate MDP M = (FM ,SM ) is
the empirically induced MDP by the mapping FM :
O → SM .

In our problem formulation we are given K candidate
MDPs {M i}Ki=1 where M i = (F i, Si). Each candidate
is in fact a mapping that describes some underlying
MDP. Following Assumption 2.4 we can define a true
candidate model as one which perfectly represents the
underlying state.

Definition 2.6 Given data generated by an MDP M ,
a candidate MDP M = (F ∗, S∗) is defined to be
the correct model if ∀o1, o2 ∈ O : s(o1) = s(o2) iff
F ∗(o1) = F ∗(o2) .

Note that we do not describe how the mappings
{F i}Ki=1 are formed. Usually, these mappings are con-
structed by a domain expert who applies the appro-
priate methods for doing feature extraction. We can
now define our setup of identification.

Definition 2.7 A model selection criterion takes as
input DT and the candidate models M1, . . . ,MK , and
chooses one of the K models as the proposed best
model. We denote a generic model selector by M̂(DT ).

We begin with a nesting assumption on the MDPs,
which we relax in Section 6.

Assumption 2.8 For all i = 1, . . . ,K, 1 ≤ j < i and
∀o1, o2 ∈ O if F i(o1) = F i(o2) then F j(o1) = F j(o2).

In other words, Assumption 2.8 states that the candi-
date model Mi is a refinement of all candidate models
Mj , 1 ≤ j < i. When the nesting assumption holds, it
is much easier to ascertain one candidate is preferable
to another since the model selection problem becomes
whether or not a group of states should be aggregated.
In addition, although Assumption 2.8 seems harsh, hi-
erarchical clustering algorithms naturally create a fam-
ily of nested candidate models.

Finally, we give a formal definition of criterion’s weak
consistency which implies that for enough samples it
will select the correct model.

Definition 2.9 Consider a model M , a model selec-
tion criterion M̂(DT ) and a set of candidate models
{M i}Ki=1. Define M̂(DT ) to be a weakly consistent
criterion with respect to the given correct model and
set of models, if for 1 ≤ i ≤ K, i 6= j:

Pj
(
M̂(DT ) = i

)
→ 0 as T →∞,

where Pj is the induced probability when model j is the
correct model.

We conclude this section with an example which will
demonstrate the setup.

Example 2.10 Consider an MDP M =
(S,U , P,R,O) with S = {1, 2, 3}, O = s + n1,U =
{u}, R = s + n2, where n1 ∼ U([−0.2, 0.2]), n2 ∼
N (0, 1) and the transitions are uniform for the only
action u. An observation realization may be:

o = (0.99, 1.98, 1.99, 3.0, 3.0, 3.0, 2.0, 2.0, 1.08),

r = (0.9, 1.97, 2.06, 3.1, 2.9, 3.13, 2.07, 2.0, 1.0).
(2)

Suppose we have 4 candidate models, M1, . . . ,M4,
where the function F i is the induced clustering from
applying the k-means clustering algorithm (Duda et al.,
2001) on the observations to i clusters, and the transi-
tion matrix and the reward for each such model are
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found empirically from the induced trajectory. Ex-
pressing the states abstractly using the finest state
space S4 = {a, b, c, d} yields

DT =


a a a a a a a a a
a b b b b b b b a
a b b c c c b b a
a b b c c c b b d

 ,

where line i depicts the i’th model’s induced trajectory.

3. Previous Work

Previous works investigating model selection in
Markov processes have largely focused on a single
state space ((Fard & Pineau, 2010) and (Farahmand
& Szepesvári, 2011)), selecting state representations in
RL focusing on the regret (Maillard et al., 2011), or
minimizing the errors of the Bellman operator (Farah-
mand & Szepesvári, 2011). Unlike our model based ap-
proach, these works focused largely on the Q-function.

There has also been substantial work on state aggre-
gation in the RL literature, proposing different aliased
states definitions (Li et al., 2006). Givan et al. (2003)
suggested the bisimulation definition for aliased states
which we adopt in this paper, but other aliasing defini-
tions have been proposed as well (for example accord-
ing to the Q-function in McCallum (1996) or policy
invariance in Jong & Stone (2005)). Li et al. (2006)
reviewed the different definitions and found relations
between them. We see our work as another layer in
unifying model selection theory as we focus on the of-
fline problem where historical data are available.

Another aspect in which much work has been done
is finding the aggregated states. For instance one
can use the spectral properties of the transition ma-
trix (see Mahadevan 2009 and references therein),
while Ravindran (2003) suggested defining and find-
ing aliased states using homomorphisms. In this as-
pect our work is most closely related to the works of
Jong & Stone (2005) who proposed statistical testing
on the Q-function, while we use them on the models’
transition probabilities and rewards.

Finally, there are substantial amount of works on find-
ing a good policy in a dynamic marketing environment.
In their paper on catalog mailing policies, Simester
et al. (2006) suggested a discretizing heuristic for a
continuous state space with a geometric structure. Al-
though our method of designing a state space is simi-
lar, we were able to provide some theoretical reasoning
to it. (Pednault et al., 2002) conducted experiments
showing that a dynamic policy on data from the KDD
cup in 1998 (Hettich & Bay, 1999) outperforms a my-
opic policy which ignores the underlying dynamics. In

contrast to this work and other works in this area, we
focus on a rigorous method to build the state space
which is based on the underlying dynamics.

4. Penalized Likelihood Criteria

Penalized Likelihood Criteria are criteria that measure
the fitness of a model based on available data. Suppose
we are given a parameterized set of candidate statis-
tical models of degree i, {M i(θ)}θ∈Θ, that describe
the generation of data. A conventional way to choose
between the models is to use Maximum Likelihood Es-
timation (MLE; (Duda et al., 2001)), which assumes
that the best value for missing parameters is the one
that maximizes the observations’ probability. But in
many cases, when comparing between models with a
varying number of parameters, the MLE is prone to
choose the model with the highest number of parame-
ters.

The Minimum Description Length (MDL; (Rissanen,
1978)) principle is a formalization of the celebrated Oc-
cam’s Razor principle that copes with the over-fitting
problem. According to this principle, the best hypoth-
esis for a given data set is the one that leads to the
best compression of the data. Define the maximum
likelihood (ML) of the model to be

Li(T ) = max
θ
{P (y1, . . . , yT |M i(θ))}.

We denote the dimension of θ by |M i|. Then, an MDL-
style model estimator has the following structure

MDL(i) , |M i|f(T )− logLi(T ), (3)

where f(T ) is some sub-linear function. In this model,
the goal is to find i such that the MDL(i) is mini-
mized. The rationale behind this criterion is simple:
we look for for a model that best fits the data but is
still “simple” in terms of missing parameters.

The most popular ones MDL-style criteria are Akaike
Information Criterion (AIC(i) = 2|M i| − 2 logLi(T );
(Akaike, 1974)) and Bayesian Information Criteria
(BIC(i) = |M i| log(T ) − logLi(T ); (Schwarz, 1978)).
We will show that in our setting, where the observa-
tions probabilities cannot be used due to their high di-
mensionality, continuous and processed nature, these
criteria can fail to find the right model.

Theorem 4.1 There exists an MDP for which an
MDL criterion in the form of (3) is not consistent.

Proof We construct an example for the general cri-
terion (3). Suppose the correct model, M∗, is an
MDP with a single action U∗ = {u} and three states,
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S∗ = {a, b, c} where Pr(st+1|st, u) = 1/2 if st+1 6= st.
An illustration of the process is given in Figure 1. The
reward function is r(a) = 0 and r(b) = r(c) = 1. Con-
sider a candidate model, denoted by M1, that is a
single-state MDP. For the correct model M∗ the like-
lihood will be for any trajectory affected only by the
transitions. For the second model the likelihood will
be for any trajectory affected only by the distribution
of the rewards. A straightforward calculation yields:

L∗(T ) = 0.5T , L1(T ) = (
1

3
)

T
3 (

2

3
)

2T
3 ≈ 0.53T .

Now, the likelihood ratio of the two models is:

lim
T→∞

L∗(T )

L1(T )
= 0.

Recalling the MDL-like criteria (3), we see that the
penalizing term can be neglected asymptotically since
it scales sub-linearly with T , while the logarithm of the
likelihood ratio scales linearly. Therefore, the wrong
model M1 is chosen. The model M1 is in fact a bad
model to describe the data since the reward sequence
of rt = 0, rt+1 = 0 cannot appear in the actual data,
yet the model M1 allows it.

Figure 1. The example given in Theorem 4.1’s proof.

We remark that this counter example follows the
framework discussed above where the models’ features
can be thought of being constructed by a domain ex-
pert and therefore do not convey a particular proba-
bilistic behavior. Although the true model M∗ is one
of the candidate models, the candidate model M1 was
chosen. In other words, the feature selection proce-
dure done before applying the ML criterion leads to
the ML approach failure to identify the right model.
In the next section we propose an alternative crite-
rion for choosing the right model and show that this
criterion is consistent.

5. Aggregation Based Criterion

We begin with defining aliased states, followed by more
intuitive explanation of this technical and lengthy def-

inition. This definition is directly related to the con-
tainment relation in Assumption 2.8.

Definition 5.1 Consider models M and M̃ , where
M̃ is a refinement of M , and with state spaces S =
{s1, . . . , si} and S̃ = {s̃1, . . . , s̃i+k−1}, respectively.
Let P and P̃ , be the transition matrices of M and M̃ ,
respectively. Let R(·) and R̃(·) be the reward functions
of M and M̃ , respectively. Define C to be the set of
states common to both S and S̃ (i.e., the mappings
from observations to states have the same inverse im-
age for any one of these states), and let s∗ ∈ S be
aggregation of k states in S̃, denoted by A, such that
C
⋃
{s∗} = S and C

⋃
A = S̃. Suppose that

1. P̃ (c2| c1, u) = P (c2| c1, u) , ∀c1, c2 ∈ C, u ∈ U ;

2.
∑
a∈A P̃ (a| c, u) = P (s∗| c, u) , ∀c ∈ C, u ∈ U ;

3. P̃ (c| a1, u) = P̃ (c| a2, u) , ∀c ∈ C, a1, a2 ∈
A, u ∈ U ;

4.
∑
a∈A P̃ (a| a1, u) =

∑
a∈A P̃ (a| a2, u) ∀a1, a2 ∈

A, u ∈ U ;

5. R̃ (a1, u) ∼ R̃ (a2, u) ,∀a1, a2 ∈ A, u ∈ U .

Then, we say that the states A in model M̃ are aliased
with respect to model M (or simply aliased).

The notion of aliased states can be interpeted as fol-
lows. In model M , there is a state, s∗, that is split into
k states in model M̃ (denoted by A). I.e, if we take the
states belonging A, and we cannot provide a statistical
test that differentiate between them (conditions 2-5)
based on the MDPs parameters, then for all practical
purposes we can aggregate these states. For example,
the value function for two MDPs that differ by having
aliased states is the same (Givan et al., 2003).

Testing whether a two states are aliased or not can
be done using hypothesis testing (Cover & Thomas,
2006) on the empirical probabilities and average re-
wards. Let Ai be the set of possibly aliased states

in model M i, p̂
(i)
kj,u be the empirical probability for

the transition from state k to state j in model i after

choosing action u, and r̂
(i)
k,u be the empirical reward of

choosing action u in state k. An examination of con-
ditions 1 − 5 is now needed, where conditions 1 and
2 are trivially satisfied from the nesting assumption.
Define:
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h
(i)
1 ,

⋂
j∈C,l,m∈Ai,u∈U

{∣∣∣p̂(i)
lj,u − p̂

(i)
mj,u

∣∣∣ < εi,lm,u
}
,

h
(i)
2 ,

⋂
l,m∈Ai,u∈U


∣∣∣∣∣∣
∑
j∈A

p̂
(i)
lj,u −

∑
j∈A

p̂
(i)
mj,u

∣∣∣∣∣∣ < εi,lm,u

 ,

h
(i)
3 ,

⋂
l,m∈Ai,u∈U

{∣∣∣r̂(i)
l,u − r̂

(i)
m,u

∣∣∣ < εi,lm,u
}
,

(4)

where {εi,lm,u}l,m∈Ai,u∈U,i=2..K are tolerance parame-
ters that are to be determined according to the desired
level of error balancing different sources of error. The
value of ε represents a tradeoff: if it is too large we
may choose a model that is too refined while if it is
too small we may choose a model that is too fine.

We note that h
(i)
1 , h

(i)
2 , and h

(i)
3 are the empirical

analogies to conditions 3-5 above. Define Hi−1,i ,

h
(i)
1

⋂
h

(i)
2

⋂
h

(i)
3 to be the event that models Mi−1 and

Mi are statistically aliased. Based on this, we define a
comparison test:

Ci = 1{Outcome contained in Hi−1,i},

and the model selector in this case is

M̂C = max
i
{i : Ci = 0} . (5)

I.e., it is the first index for which aliased states are
identified. For clarity, we summarize how to use our
proposed model selection criterion (5). We set the tol-
erance parameters {εi,lm,u}l,m∈Ai,u∈U,i=2..K for each
test to a value depending on the type of significance
test (proportions / mean) and the desirable signifi-
cance level. Specifically, we set the tolerance in the
following manner:

lim
T→∞

εi,lm,uT

√
T =∞, lim

T→∞
εi,lm,uT = 0, (6)

in order to guarantee consistency as shown. Next we

compute h
(i)
1 , h

(i)
2 and h

(i)
3 for each pair of consecutive

candidate models (i − 1, i). Based on their value we
compute the event Hi−1,i. Then, we try to identify
the greatest index i such that Ci = 0, i.e., identifying
the finest model that does not contain aliased states.

We conclude this section with a theorem that states
that the criterion in (5) is weakly consistent.

Theorem 5.2 Suppose Assumptions 2.2 and 2.8 hold
and that the correct model contains no aliased states.

In additon, assume {εi,lm,u}l,m∈Ai,u∈U,i=2..K are cho-
sen as specified in Eq. (6). Then, for any set of can-
didate models the model selector M̂C is weakly consis-
tent.

Due to space limitation, this proof and the rest of the
proofs in the paper are omitted and will be available
in a more extensive version of this work.

6. Extension to arbitrary candidates set

In Section 5 we used Assumption 2.8 that requires a
containment relation between the models. Yet, strict
containment between models is a harsh assumption
that will not always hold. In this section we show
that we can still establish consistency when the set of
candidate models M has no structure. We emphasize
that we still assume that one of the candidate models
is the true model.

We begin by formalizing the nested approach in partial
order formulation (similarly to Li et al. 2006).

Definition 6.1 For two candidate models M1 and
M2 define the aggregation order: M1 <Agg M2 if
aliased states in M1 can be aggregated to obtain M2.

It is easy to see the <Agg order is partial, and that

the aggregation criterion M̂C is equivalent to choosing
the candidate model with the least number of states
among all the maxima candidates in the given set of
nested models. We can fix the aggregation order such
that the aggregation criterion will simply choose the
only maximum as the correct model in any given set.

Definition 6.2 For two candidate models M1 =
(F 1,S1) and M2 = (F 2,S2) define the fixed aggre-
gation order as following: let M1×2 = ((F 1, F 2),S1 ×
S2), then M1 <fAgg M

2 if M1×2 <Agg M
2 and not

M2 <Agg M
1.

The motivation behind Definition 6.2 is the following:
Assume that we compare the correct model M1 and
some other model M2. Since the correct model con-
tains all the information on the system’s dynamics, it is
unnecessary to use the other model as an additional in-
formation source by looking at M1×2. Therefore M1×2

can be aggregated to the correct model M1. In other
words, the fixed aggregation order asserts whether one
model contains all the information on the dynamics
that is contained by the other model.

Like the original aggregation order, we can expand the
fixed aggregation order to a model selection criterion
and show it is weakly consistent.
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Definition 6.3 Given a set of models {M i}Ki=1 define
the fixed aggregation criterion:

M̂fAgg = arg max
<fAgg

{
M i
}
. (7)

Theorem 6.4 Suppose that Assumption 2.2 holds
and that the correct model contains no aliased states.
If the tolerance parameters are chosen as specified in
Eq. (6), then for any set of candidate models the model
selector M̂fAgg is weakly consistent.

7. Reward based criteria

In the previous sections we introduced two aggregation
based orders. However, in the improper case when
the correct model is not in the given set of candidate
models aggregation based criteria hold no ground. In
this section we suggest another reward-based criterion
that has a meaning in the predictive sense on the MDP.

Definition 7.1 For a given model M , a trajectory
DT = (ot, at, rt)

T
t=1 and a constant d ∈ N0 define the

d-delayed Reward Error (REd) value as

REd(M) =
1

T

T−d∑
t=1

(rt+d − Ê[Rt+d|st, at])2 + |S| f(T )

T
,

(8)

where Ê[Rt+d|st, at] is the empirical expectation of re-
wards obtained from the state-action pair (st, at) after
d steps, and f(T ) is a sublinear function that satisfies

limT→∞
f(T )√
T

=∞.

The REd score for a given model is the reward predic-
tion error, with an additional penalty function which
prevents empirical fluctuations from tilting the score
to more refined models.

Definition 7.2 The REd order is the induced order by
the REd score, and the REd model criterion as select-
ing the minimal model with respect to the REd order.

Observe for instance the example given in Theorem
4.1’s proof. The rewards for the correct model M∗

are deterministic, while the rewards for the one-state
model M1 are distributed Bernoulli(1/3). Therefore,

RE0(M∗) = 0 + 3 f(T )
T and RE0(M1) = 2

9 + f(T )
T , and

the chosen model asymptotically will be M∗.

Theorem 7.3 If ∀s1, s2 ∈ S : E[Rt+d|st = s1] 6=
E[Rt+d|st = s2], then the REd criterion is weakly con-
sistent.

The RE0 criterion was suitable for the example in The-
orem 4.1’s proof, but it will often fail in real world

problems where the rewards are sparse, which means
many candidate models will have the same RE0 value.
For example, in (Simester et al., 2006) the reward is
zero in most of the states. In this case higher values
of d can be used, since these include the dynamics of
the system as well as the immediate rewards. While
on one hand the d-step reward is spread over more
states and therefore might be less distinctive, it orig-
inates from the transition probabilities and therefore
considers model information not available in the RE0

criterion. An example where the RE0 criterion fails
but the RE1 criterion works is illustrated in Figure 2.

Figure 2. An example where RE0 fail and RE1 succeeds.

In Figure 2, the upper drawing is the correct single-
action MDP. Assume that the data are generated from
the given MDP, and two candidate models: The cor-
rect model M1, and another model M2 given in the
lower drawing with 2 states - a and another state d -
the aggregation of the states b and c. According to the
RE0 criterion, both models will produce the same score
and thus the wrong model M2 will be chosen since it
contains less states. However, applying the RE1 cri-
terion we obtain asymptotically that RE1(M1) = 0
while RE1(M2) > 0, i.e., the RE1 criterion will select
the correct model relying on enough data.

8. Experiments

8.1. Simulated data

We simulated an MDP with 20 non aliased states with
noisy rewards and observations consisting of 7 inde-
pendent features. Next, we generated two data tra-
jectories using the simulator. Using Matlab’s k-means
clustering algorithm (Duda et al., 2001) on the obser-
vations from the first trajectory we constructed can-
didate models of increasing state space size from 2 to
40, where the candidate model of size 20 was set to be
the correct model. The first trajectory was only used
to create data independent candidate models.

The second trajectory was used for evaluation of differ-
ent MDL criteria, RE0/RE1 criteria and the optimal
average value function based on the estimated model.
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This simulation process was averaged over 100 simula-
tions, and we used trajectories of different sizes - 100,
1K and 10K. The results are shown in Figure 3.

Figure 3. Performance of the different criteria on simu-
lated data. [1st, 2nd row] The REd score with / without
(red/blue) the regularizing summand. [3rd row] The ML,
AIC and BIC (blue/red/green) scores. [4th row] The cor-
rect value for the optimal policy, the value for the estimated
optimal policy and its real value (blue/red/green).

It seems that the REd works best among the inspected
criteria on our simulations. The penalized MDL scores
favors overly refined models for increasingly more data.
The value function exhibits an interesting property -
when there’s not enough data the estimated value is
higher than the correct one. This phenomenon is more
severe for more refined state spaces, i.e. sometimes
choosing a smaller incorrect model can lead to better
performance. With that in mind, the value function it-
self can be used as a model selection criterion, perhaps
with some additional regularization summand.

8.2. KDD Cup 1998 Data

As a test bench, we used the donation data set from
the KDD Cup 1998 competition (Hettich & Bay, 1999)
in which the goal was to estimate the return for a di-
rect mailing task. As observations we used the first
8 features given by (Pednault et al., 2002) with some
rescaling. We then tested the different criteria simi-
larly to before: we used a small portion of the data
(1K trajectories of length 22) to construct candidate
models using k-means. In order to compensate for un-
known penalty for frequent donation requests, we have

decreased the reward for sending a donation request by
2. Over 100 simulations, we randomly chose the data
from which candidate models are formed, and used
the most of what’s left of the data (8K trajectories)
to evaluate the different criteria on the proposed mod-
els. The remaining 1K trajectories were used to esti-
mate the optimal/myopic policy for the infinite hori-
zon value function with a discount factor 0.9 (normal-
ized to [0, 1]). The results are shown in Figure 4.

It is important to emphasize that in our scheme of
cross validation, instead of using the same data to
construct the state space and to estimate the induced
MDP, we used disjoint parts from the data. When the
state space is constructed only according to the ob-
servations, this partition is not necessary. However,
building the state space according to the dynamics of
the problem and then estimating the same dynamics
yields a statistical dependence which undermines the
generality of the proposed solution.

Figure 4. Performance of the different criteria on data ac-
quired from the KDD cup 1998, where the state space was
constructed by k-means clustering. [1st row] The REd score
with/without the regularizing summand (red/blue). [2nd

row, left] The ML, AIC and BIC (blue/red/green) scores.
[2nd row, right] The estimated value for the optimal pol-
icy, estimated value for the greedy policy (blue/dashed
blue), and their sampled value on the general population
(red/dashed red).

In our results, it seems that all criteria point towards
state spaces with roughly 60 states, supporting each
of the suggested criteria. In addition, as was shown
before (Pednault et al., 2002), dynamic policy distinc-
tively outperform a myopic policy. Another interesting
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property is the saturation behavior of the estimated
value function, while its cross evaluation receives its
maximum and decreases significantly afterwards. This
phenomenon can be described as overfitting - the found
optimal policy is less accurate since the number of sam-
ples per state decreases.

9. Conclusions

Estimating or optimizing a Markov decision process
requires three steps: identifying the correct model, es-
timating the parameters, and applying an optimiza-
tion algorithm. While considerable research has been
conducted on estimation procedures and optimization
algorithms (Singh et al., 2009), much less work has
been done on identifying the right model. In this paper
we propose a framework for statistical identification of
Markovian models from data.

Our work concentrated mainly on asymptotic notions
and definitions. Yet, providing finite sample analy-
sis for the proposed criteria is not hard as we employ
standard tools of statistical hypothesis testing. As a
result, the tolerance parameters can be chosen in a
simple fashion and exponential bounds on the error
probabilities can be derived.

In our experiments, we had examined different model
selection criteria. The aggregation criteria has good
theoretical guarantees and the reward based criteria
showed results as good as ML based methods. We
extended our hypothesis testing method to build a
consistent model construction algorithm that works
in manageable complexity. Finally, our methods were
used on real world donation data from the KDD cup
1998, yielding interesting results.
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